Leis de Ohm.
O físico alemão Georg Simon Ohm (1787-1854) ao tomar conhecimento do livro ThéorieAnalytique de la Chaleur (“Teoria Analítica do Calor”) escrito pelo físico e matemático francês Jean-Baptiste-Joseph, Barão de Fourier (1768-1830) e publicado em 1822 (vide verbete nesta série), procurou aplicá-lo ao fluxo da carga elétrica em um condutor. Para isso, fez uma série de experiências em 1825 e 1826. Com efeito, de janeiro a julho de 1825, Ohm realizou experiências com circuitos elétricos cuja fonte era uma bateria de pilhas voltaicas (vide verbete nesta série). Inicialmente, entre os polos da bateria, ligou sucessivamente condutores metálicos de mesmo diâmetro, porém de comprimentos diferentes. Para medir a quantidade de eletricidade que passava na secção reta dos condutores e na unidade de tempo – denominado por ele de intensidade da corrente elétrica (I) – Ohm utilizou uma balança de torção de Coulomb (1784) montada em um galvanômetro [aparelho que havia sido inventado pelo físico francês André Marie Ampère (1775-1836), ainda em 1825], uma vez que o ângulo de torção registrado pela balança era proporcional à intensidade I. Nessa série de experiências, Ohm observou que o comprimento do condutor era responsável pela “perda de força” (Kraftverlust) (v) em relação a uma situação em que a bateria estava ligada a um condutor curto e grosso. Em seguida, Ohm tomou condutores de vários comprimentos e demonstrou que, em certas condições (por exemplo, dimensões não muito grandes dos condutores), existia uma relação entre v e o comprimento (x) dos condutores: v = 0,41 log (1 + x). Ohm conseguiu publicar seus resultados experimentais, em maio de 1825, no Journal fürChemie und Physik 44, p. 110, e no Annalen der Physik und Chemie 4, p. 79. [Kenneth L. Caneva, Georg Ohm, IN: Dicionário de Biografias Científicas, Volume III (Contraponto, 2007).] É interessante ressaltar que, em termos da intensidade I, Ohm definia a “perda de força” como sendo dada pela relação (I – I0)/I0, onde I representa a intensidade da corrente que circula num condutor de certo comprimento e I0, a intensidade da corrente que circula em um condutor curto e grosso, escolhido como padrão. Ressalte-se, também, que Ohm observou que a “perda de força” ainda dependia dos parâmetros que se relacionavam com a geometria e com o tipo de material nos condutores, denominado por Ohm de resistência elétrica (R). (Pierre Lucie, Contacto - Ciências 35, 1980.)
Apesar da publicação do trabalho de Ohm no Annalen, o editor dessa Revista, o físico alemão Johann Christian Poggendorff (1796-1877), fez-lhe uma sugestão. Com efeito, nesse trabalho, Ohm afirmara que a diminuição da “perda de força” era devida a uma possível variação na solução salina da pilha “hidroelétrica” que usura. Poggendorff, em Nota Editorial, sugeriu que Ohm refizesse suas experiências com uma pilha mais estável, indicando, então, o termopar que havia sido inventado pelo físico russo-alemão Thomas Johann Seebeck (1770-1831), em 1821 (vide verbete nesta série).
Em dezembro de 1825, Ohm começou a realizar novas experiências com circuitos elétricos, usando um termopar de cobre (Cu) – bismuto (Bi) em lugar da pilha voltaica que usara antes. Desse modo, na primeira metade de 1826, Ohm publicou quatro importantes artigos que tratavam de novos aspectos de sua teoria da eletricidade galvânica. No primeiro deles (Journal fürChemie und Physik 46, p. 137), procurou determinar uma relação entre a força eletromagnética da corrente e o comprimento total do fio de ligação. Assim, depois de uma série de experimentos, Ohm observou que os dados de cada série podiam ser descritos pela expressão: X = a/(b + x), onde X é a intensidade do efeito eletromagnético – que tomou como sendo I – de um condutor de comprimento x sobre a agulha magnética de uma balança de torção de Coulomb, e onde a e b são constantes cuja natureza exata ele se propôs a determinar por meio de outros experimentos. Além disso, ao observar que b permanecia constante em todas as séries de experimentos, e que a variava com a temperatura, levou Ohm a concluir que a só dependia da força eletromotriz [“erregende Kraft”] da pilha termoelétrica e b só da resistência [“Leitungswiderstand” (resistência de condução) ou “Widerstandlänge” (comprimento de resistência)] da porção restante do circuito, em particular a da própria pilha. Observou, ainda, que a força eletromotriz da pilha parecia ser proporcional à diferença de temperatura nas extremidades. Essas observações podem ser resumidas pela seguinte lei: - A força eletromotriz (E) atuando entre as extremidades de qualquer parte de um circuito é o produto da intensidade da corrente (I) e da resistência (R) daquela parte do circuito: E = RI. Esclareça-se que Ohm introduziu o conceito de força eletromotriz para substituir e aclarar a ideia de tensão que o cientista e estadista norte-americano Benjamin Franklin (1706-1790) havia conceituado em seus trabalhos sobre fluido elétrico, realizados entre 1747 e 1749 (vide verbete nesta série e Caneva, op. cit.; Lucie, op. cit.)
Nos outros três artigos (Annalen der Physik und Chemie 6, p. 459; 7, p. 45; 117), Ohm desenvolveu uma ampla teoria da eletricidade galvânica baseada no fato de que o contato de corpos heterogêneos produzia e mantinha uma tensão (“Spannung”) constante. Como resultado de seus experimentos, Ohm apresentou a seguinte expressão:
X = k w (a/
),
onde X é a intensidade da corrente elétrica (I), conforme vimos acima, k, w e
são, respectivamente, a condutibilidade (“Leitungsvermögen”), a secção reta e o comprimento de um condutor; e a é a tensão elétrica (“força eletroscópica” ou “força eletromotriz”) entre os extremos do condutor.
É interessante registrar que Ohm media a tensão de uma pilha conectando um terminal a terra e o outro terminal a um eletroscópio. Quando ele queria saber as condições elétricas de um dado corpo A, ele o deslocava em relação a um eletroscópio, que era então atraído ou repelido pelo corpo eletrizado, por intermédio de uma “força eletroscópica”, como ele a denominou. [Sir Edmund Whittaker, A History of the Theories Aether and Electricity: The Classical Theories (Thomas Nelson and Sons Ltd., 1951).]
Na continuação de seus trabalhos sobre uma teoria matemática da eletricidade galvânica, Ohm observou que a quantidade de carga elétrica (S) que passa através de uma dada secção reta (w) de um condutor de condutibilidade (k) na unidade de tempo, é dada pela expressão: S = k w du/dx, onde u é a “força eletroscópica” em um ponto variável x do condutor. Como também demonstrou que du = (a/
)d x é fácil ver como ele chegou à expressão:
S = k w (a/
) = X = I.
Registre-se que Ohm reuniu os resultados de seus trabalhos sobre a matemática da eletricidade galvânica em um livro intitulado Die Galvanische Kette Mathematisch Bearbeitet (“O Circuito Galvânico Matematicamente Analisado”), publicado em 1827. Nesse livro, além dos resultados obtidos em 1825 e 1826, Ohm descreveu novas experiências nas quais estudou a condutividade dos condutores, assim como as relações entre correntes e resistências associadas em série e em paralelo, e suas famosas leis.
Antes de apresentar as leis de Ohm em sua forma moderna, é oportuno destacar que Ohm usou o conceito de tensão elétrica e não o de potencial eletrostático, que só foi definido pelo matemático inglês George Green (1793-1841), em 1828, em uma brochura, de divulgação privada, intitulada An Essay on the Application of Mathematical Analysis to the Theories ofElectricity and Magnetism (“Um Ensaio sobre a Aplicação da Análise Matemática às Teorias da Eletricidade e do Magnetismo”). Aliás, o conceito geral de função potencial (V) já havia sido apresentado pelo matemático e astrônomo Pierre Simon, Marquês de Laplace (1749-1827), no primeiro volume de sua Mécanique Celeste (“Mecânica Celeste”), publicado em 1799, função essa que satisfaz a célebre equação de Laplace:
V = 0.
Agora, vejamos as leis de Ohm na linguagem atual, envolvendo valores constantes. Para um condutor de comprimento (L), de secção reta (A) e condutividade (g), a diferença de potencial (V) entre seus extremos é dada por: V = E L, onde E é a intensidade do campo elétrico (
). Por outro lado, a densidade de corrente elétrica (
) nesse condutor percorrido por uma corrente elétrica de intensidade (I), tem a seguinte expressão (em módulo): J = I/A. Adaptando os termos usados por Ohm a essa nova nomenclatura, sua expressão vista acima:
S = k w (a/
) = X = I,
transforma-se na equação:
I = g A (V/L)
I/A = J = g E, ou na linguagem vetorial:
= g
.
Esta é a famosa lei de Ohm. Ela, no entanto, pode ser assim escrita:
V = (1/g) (L/A) I.
Definindo-se:
= 1/g, como a resistividade e R =
L/A, como a resistência elétrica, virá: V = I R. É oportuno destacar que essa expressão para R é também conhecida como a segunda lei de Ohm.
Por fim, registre-se que as descobertas de Ohm foram bastante estudadas por vários pesquisadores, como, por exemplo, pelo físico e filósofo alemão Gustav Theodor Fechner (1801-1887) – um dos principais pesquisadores da psicofísica – em seu livro intitulado Maassbestimmumgen über die Galvanische Kette (“Determinação da Massa do Circuito Galvânico”), em 1831. Por sua vez, em 1833/1834 (Mémoires de l´Académie Impériale desSciences de Saint-Petersbourg 2, p. 427; Annalen der Physik und Chemie 31, p. 483), o físico germano-russo Heinrich Friedrich Emil Lenz (1804-1865), descobriu que a resistência de um fio metálico cresce quando aumenta a sua temperatura.
As leis de Ohm foram redescobertas pelo físico francês Claude Servais Mathias Pouillet (1790-1868), em 1839, ao realizar experiências com circuitos elétricos, nas quais usou novas técnicas, envolvendo galvanômetros do tipo “tangente” e “seno”, que lhe permitiram medir correntes elétricas fracas. Por essa razão, o cálculo da corrente elétrica (I) em um circuito de resistência elétrica externa (R),.que é alimentado por um gerador de força eletromotriz (E) e resistência interna (r), dada pela expressão:
I = E/(R + r),
é também conhecida como lei de Ohm-Pouillet. (René Taton, IN: Dictionary of Scientific Biography, op. cit.)
Por fim, é ainda oportuno registrar que o físico inglês Sir Charles Wheatstone (1802-1875), em 1843 (Philosophical Transactions of the Royal Society of London 133, p. 303), apresentou a verificação experimental da lei de Ohm e, desse modo, tornou-a conhecida na Inglaterra. Para essa verificação, desenvolveu novos modos de medir resistências e correntes elétricas, com um dispositivo hoje conhecido como ponte de Wheatstone. (Sigalia Dostrovsky, IN:Dictionary of Scientific Biography, op. cit.)